\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \)
Math and science::Algebra::Aluffi

Endomorphisms and automorphisms

Endomorphism

An endomorphism is a morphism that [meets what criteria?].

For an object \( A \) in category \( \cat{C} \) the set of endomorphisms of \( A \) are all morphisms in [what set?], which is denoted as \( \mathrm{End_C}(A) \).

Automorphism

An automorphism is a morphism that [meets criteria 1] and [criterial 2].

For an object \( A \) in category \( \cat{C} \), the set of automorphisms for \( A \) is denoted as \( \mathrm{Aut_C}(A) \). \( \mathrm{Aut_C}(A) \) is a subset of [what set?].