\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \)
Math and science::Analysis::Tao::05. The real numbers

Sequences

Let \( m \) be an integer. A sequence \( (a_n)_{n=m}^{\infty} \) of rational numbers is any function from the set \( \{ n \in \mathbb{Z} : n \ge m \} \) to \( \mathbb{Q} \).

In other words, a sequence is a mapping that assigns to each integer greater than or equal to \( m \) a rational number \( a_n \).


From sequences to reals

sequence → ε-steady sequence → eventually ε-steady sequence → Cauchy sequence → ε-close sequences → eventually ε-close sequences → equivalent sequences → real numbers.

Example

\( (n^2)_{n=0}^{\infty} \) is the collection 0, 1, 4, 9..., where the function \( f: \mathbb{Z} \rightarrow \mathbb{Q} \) is the set of tuples \( \{ (0, 0), (1, 1), (2,4), (3, 9)... \} \) where for every first element of the tuple, \( n \), the second element is \( n^2 \).


Source

Tao, Analysis I