\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::Analysis::Tao::05. The real numbers

ε-close sequences

Let \( (a_n)_{n=0}^{\infty} \) and \( (b_n)_{n=0}^{\infty} \) be two sequences and let \( \varepsilon > 0 \) be a rational. \( (a_n)_{n=0}^{\infty} \) is said to be ε-close to \( (b_n)_{n=0}^{\infty} \) iff [...] for all \( k \ge 0 \).