\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::Analysis::Tao::05. The real numbers

Eventually ε-close sequences

Let \( (a_n)_{n=0}^{\infty} \) and \( (b_n)_{n=0}^{\infty} \) be two sequences of rational numbers and let \( \varepsilon >0 \) be a rational. The sequences are said to be eventually ε-close iff there exists an integer \( N \ge 0 \) such that [...] are ε-close.