\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\)
Math and science::Analysis::Tao::05. The real numbers
Eventually ε-close sequences
Let \( (a_n)_{n=0}^{\infty} \) and \( (b_n)_{n=0}^{\infty} \) be two sequences of rational numbers and let \( \varepsilon >0 \) be a rational. The sequences are said to be eventually ε-close iff there exists an integer \( N \ge 0 \) such that
[...] are ε-close.