\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \)
Math and science::Analysis::Tao::05. The real numbers

Uniqueness of least upper bound, proposition

Let \( E \) be a subset of \( \mathbb{R} \). Then \( E \) can have at most one least upper bound

This is a simple proposition.


Proof
Let \( E \) be a subset of \( \mathbb{R} \), and let \( M \) and \( M' \) be two upper bounds of \( E \). If both upper bounds are least upper bounds then both \( M \le M' \) and \( M' \le M \), by the definition of least upper bounds. This implies that \( M = M' \) and that there is only a single least upper bound.

Upper bound def → least upper bound def→ uniqueness of least upper bound → existence of least upper bound → supremum def


Source

Tao, Analysis I