\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\)
Math and science::Analysis::Tao::06. Limits of sequences
Formal limits are genuine limits
Suppose that \( (a_n)_{n=1}^{\infty} \) is a [...] of rational numbers (defined for reals). Then \( (a_n)_{n=1}^{\infty} \) converges to \( LIM_{n\to\infty}a_n \), i.e.
\[ \lim_{n\to\infty}a_n = LIM_{n\to\infty}a_n \]