\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::Analysis::Tao::06. Limits of sequences

Suprema and infima of sequences, definition

Carrying over the idea of supremum and infimum of sets of reals to supremum and inimum of sequences of reals.

Let \( (a_n)_{n=m}^{\infty} \) be a sequence of real numbers. Then we define \( \sup(a_n)_{n=m}^{\infty} \) to be the supremum of [...], and \( \inf(a_n)_{n=m}^{\infty} \) to be the infimum of the same [...].