\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \)
Math and science::Analysis::Tao::06. Limits of sequences

Limit superior and limit inferior

Suppose that \( (a_n)_{n=m}^{\infty} \) is a sequence. We define a new sequence \( (a_N^+)_{N=m}^{\infty} \) by the formula:

\[ a_N^+ := \sup(a_n)_{n=N}^{\infty} \]

In other words, \( a_N^+ \) is the supremum of all the elements in the sequence from \( a_N \) onwards.

We then define the limit superior of the sequence \( (a_n)_{n=m}^{\infty} \), denoted by \( \limsup_{n\rightarrow \infty}a_n \), by the formula:

[...]

The mirror proceedure defines the limit inferior. First define:

\[ a_N^- := \inf(a_n)_{n=N}^{\infty} \]

The the limit inferior is:

[...]