\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \)
Math and science::Analysis::Tao::06. Limits of sequences

Squeeze test

Let \( (a_n)_{n=m}^{\infty} \), \( (b_n)_{n=m}^{\infty} \) and \( (c_n)_{n=m}^{\infty} \) be sequences of real numbers such that:
\[ a_n \le b_n \le c_n \]
for all \( n \ge m \). Suppose that \( (a_n)_{n=m}^{\infty} \) and \( (c_n)_{n=m}^{\infty} \) both converge to the same limit \( L \). Then \( (b_n)_{n=m}^{\infty} \) also converges to \( L \).

This is not an iff relationship. 


This proof is broken down using the comparison principle, then using the fact that if a sequence converges, then its limit superior and limit inferior both equal the limit of the sequence. 

The comparison principle
Suppose that \( (a_n)_{n=m}^{\infty} \) and \( (b_n)_{n=m}^{\infty} \) are two sequences of real numbers such that \( a_n \le b_n \) for all \( n \ge m \). Then we have the inequalities:
\[
\begin{aligned}
\sup(a_n)_{n=m}^{\infty} &\le \sup(b_n)_{n=m}^{\infty} \\
\inf(a_n)_{n=m}^{\infty} &\le \inf(b_n)_{n=m}^{\infty} \\
\limsup_{n\rightarrow \infty} a_n &\le \limsup_{n\rightarrow \infty} b_n \\
\liminf_{n\rightarrow \infty} a_n &\le \liminf_{n\rightarrow \infty} b_n
\end{aligned}
\]


Source

Tao, Analysis I
Chapter 6, p145