\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\)
Math and science::Analysis::Tao::06. Limits of sequences
Zero test for sequences
A consequence of the squeeze test is the following:
Let \( (a_n)_{n=m}^{\infty} \). Then the limit \( \lim_{n\rightarrow \infty} a_n \) exists and is equal to zero if and only if the limit \( \lim_{n \rightarrow \infty} |a_n| \) exists and is equal to zero.