\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::Analysis::Tao::07. Series

Fubini's theorem for finite series

Let \( X \) and \( Y \) be finite sets, and let \( f: X \times Y \rightarrow R \) be a function. Then
\[ \begin{aligned}\sum_{x \in X}\left( \sum_{y \in Y}f(x,y) \right) &= [...] \\&= [...] \\&= [...]\end{aligned} \]