\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\)
Math and science::Analysis::Tao::07. Series
Fubini's theorem for finite series
Let \( X \) and \( Y \) be finite sets, and let \( f: X \times Y \rightarrow R \) be a function. Then
\[ \begin{aligned}\sum_{x \in X}\left( \sum_{y \in Y}f(x,y) \right) &= [...] \\&= [...] \\&= [...]\end{aligned} \]