\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \)
Math and science::Analysis::Tao::07. Series

Alternating series test

An alternating series converges if the sequence of elements converges absolutely to zero.

Let \( (a_n)_{n=m}^{\infty} \) be a sequence of real numbers which are non-negative and decreasing, thus \( a_n \ge 0 \) and \( a_n \ge a_{n+1} \) for every \( n \ge m \). Then the series \( \sum_{n=m}^{\infty}(-1)^n a_n \) is convergent if and only if the sequence [...] converges to 0 as \( n \rightarrow \infty \).