\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\)
Math and science::Analysis::Tao::07. Series
Telescoping series
Let \( (a_n)_{n=0}^{\infty} \) be a sequence of real numbers which converge to 0, i.e., \( lim_{n \rightarrow \infty} a_n = 0 \). Then the series
\( \sum_{n=0}^{\infty}(a_n - a_{n+1}) \) converges to \( a_0 \).
A post on The Math Forum talks about the naming of this series: