\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\)
Math and science::Analysis::Tao::07. Series
Geometric series
Let \( x \) be a real number. If \( |x| \ge 1 \), then the series \( \sum_{n=0}^{\infty} x^n \) is divergent. If however \( |x| \le 1 \), then the series is absolutely convergent and the sum is given by:
[...]
On the reverse side, there is some geometric visual reasoning; can you remember what it looks like?