\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::Analysis::Tao::03: Set theory

Cardinality of sets

Equal cardinality

We say that two sets \( X \) and \( Y \) have equal cardinality iff [...].

Cardinality n

Let \( n \) be a natural number. A set \( X \) is said to have cardinality n if it has equal cardinality with the set [...]. We also say that such a set has \( n \) elements.

Finite sets

A set is finite iff [...] for some natural number \( n \); otherwise, the set is called infinite.

Notation: if \( X \) is a finite set, we use \( \#(X) \) to denote the cardinality of \( X \).