\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
deepdream of
          a sidewalk
Show Question
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \)
Math and science::Analysis::Tao::08. Infinite sets

Fubini's theorem for infinite series

The extension of Fubini's theorem to infinite series is not a straightforward process. The proof acts as a summary of concepts including infinite series, series, limits, supremum and functions.

Let \( f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \) be a function such that \( \sum_{(n,m) \in \mathbb{N} \times \mathbb{N}} f(n, m) \) is absolutely convergent. Then we have

\[ \begin{aligned} \sum_{n=0}^{\infty} \left( \sum_{m=0}^{\infty} f(n, m) \right) &= \sum_{(n,m) \in \mathbb{N} \times \mathbb{N} } f(n, m) \\ &= \sum_{(m,n) \in \mathbb{N} \times \mathbb{N} } f(n, m) \\ &= \sum_{m=0}^{\infty} \left( \sum_{n=0}^{\infty} f(n, m) \right)\end{aligned} \]

In other words, we can switch the order of infinite sums provided that the entire sum is absolutely convergent.


If you have time, it's worth working through the proof.


Source

p190