\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::Analysis::Tao::08. Infinite sets

Maximal and minimal elements, definition

Let \( X \) be a partially ordered set, and let \( Y \) be a subset of \( X \).

Minimal element

We say that \( y \) is a minimal element of \( Y \) if [...].

Maximal element

We say that \( y \) is a maximal element of \( Y \) if [...].