\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \)
Math and science::Analysis::Tao::09. Continuous functions on R

Function convergence's equivalence to sequence convergence

Let \( X \) be a subset of \( \mathbb{R} \), let \( f : X \to \mathbb{R} \) be a function, let \( E \) be a subset of \( X \), let \( x_0 \) be an adherent point of \( E \), let \( L \) be a real, and let \( \varepsilon > 0 \) be a real. Then the following two statements are logically equivalent:

  • \( f \) converges to \( L \) at \( x_0 \) in \( E \).
  • [...].