deepdream of
          a sidewalk
Show Question
Math and science::Analysis::Tao::09. Continuous functions on R

Left and right limits

The two separate halves of a complete limit limxx0;xXf(x).

Let X be a subset of R, f:XR be a function and x0 be a real number.

If x0 is an adherent point of X(,x0), then we define the left limit, f(x0) of f at x0 to be:

f(x0):=limxx0;xX(,x0)f(x)

If x0 is an adherent point of X(x0,), then we define the right limit, f(x0+) of f to be:

f(x0+):=limxx0;xX(x0,)f(x)

Note: if and only if x0 is an adherent point of (,x0) then it is a limit point of (,x0], as adherent to a set minus the element in question is the definition of being a limit point of that set.


Shorthand notations are:

limxx0f(x):=limxx0;xX(,x0)f(x)
limxx0+f(x):=limxx0;xX(x0,)f(x)

Example

Let f:RR be the signum function:

sgn(x):={1,if x>00,if x=01if x<0

The sgn(x) is continuous at every non-zero value of x. The left and right limits at 0 are:

sgn(0)=limxx0;xX(,0)sgn(x)=limxx0;xX(,0)1=1 sgn(0+)=limxx0;xX(0,)sgn(x)=limxx0;xX(0,)1=1


Source

p232-233