\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::Analysis::Tao::09. Continuous functions on R

Monotonic functions

Let \( X \subseteq \mathbb{R} \) and \( f : X \to \mathbb{R} \) be a function.

We say that \( f \) is [...] iff \( f(y) \ge f(x) \) whenever \( x,y \in X \) and \( y > x \).

We say that \( f \) is [...] iff \( f(y) > f(x) \) whenever \( x,y \in X \) and \( y > x \).

We say that \( f \) is [...] iff \( f(y) \le f(x) \) whenever \( x,y \in X \) and \( y > x \).

We say that \( f \) is [...] iff \( f(y) < f(x) \) whenever \( x,y \in X \) and \( y > x \).

We say that \( f \) is [...] iff \( f \) is [...] increasing or [...] decreasing.

We say that \( f \) is [...] iff \( f \) is [...] monotone [...] or [...] monotone [...].

Some properties of monotic functions

  • Function continuity implies monotonicity? [...]
  • Function monotinicity implies continuity? [...]
  • Monotone functions on a closed interval obey the maximum principle (with continuity requirement ignored)? [...]
  • Monotone functions on a closed interval obey the intermediate value principle (with continuity requirement ignored)? [...]
  • If a function is strictly monotone and continuous, then one very nice property is that [...].