\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::Analysis::Tao::10: Differentiation of functions

Differentiability on a domain

Let \( X \) be a subset of \( \mathbb{R} \) and let \( f : X \to \mathbb{R} \) be a function. We say that \( f \) is differentiable on \( X \) iff [...].

Tao describes this as an if rather than iff statement.