\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::Analysis::Tao, measure::01. Jordan measure

Carathéodory type property

Let \( E \subset \mathbb{R}^d \) be a bounded set, and let \( F \subset \mathbb{R}^d \) be an elementary set. It is true that:

[\[ m^{*,(J)}(E) \quad [=, \le, \ge, <, >] \quad \text{what?} \]]