\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::Analysis

Heine-Borel Theorem

Heine-Borel Theorem for \( \mathbb{R} \)

A set \( K \subset \mathbb{R} \) is compact iff [...].

If you have forgotten some of the formulations of compactness, here is a recap of one:

Compactness

A set \( K \subseteq \mathbb{R} \) is compact iff [...].