\(
\newcommand{\cat}[1] {\mathrm{#1}}
\newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})}
\newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}}
\newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}}
\newcommand{\betaReduction}[0] {\rightarrow_{\beta}}
\newcommand{\betaEq}[0] {=_{\beta}}
\newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}}
\newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}}
\)
Math and science::Analysis
Exercise: nested sequences of sets
The following statement is [true or false?]
If \( F_1 \supseteq F_2 \supseteq F_3 \supseteq F_4 \supseteq ... \) is a
nested sequence of nonempty closed sets, then the intersection \(
\bigcap_{n=1}^{\infty} F_n \neq \emptyset \).