\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::Analysis

Perfect Sets

Perfect sets

A set \( P \subseteq \mathbb{R} \) is perfect iff [...].

The following theorem highlights the importance of perfect sets. (Abbott actually introduces this theorem in order to motivate the concept of perfect sets. See the reverse side for more details.)

A nonempty perfect set is [...].