\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \)
Math and science::Theory of Computation

Regular language operators

Let \( A \) and \( B \) be languages. We define the regular operations union, concatenation and star as follows:

Union
\( A \cup B = \{x \mid x \in A \lor x \in B\} \)  (i.e. as per standard axiom of union for sets)
Concatenation
\( A \circ B = \{ [...] \mid x \in A \land y \in B \} \)
Star
\( A^\star = \{ [...] \mid k \ge 0 \text{ and each } x_i \in A \} \)

The class of regular languages is [...]!