\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::INF ML AI

Covariance

Covariance is a real that gives some sense of how much two variables are linearly related to each other, as well as the scale of these variables. Covariance is a function of a probability space and two random variables. Let \( (\Omega, \mathrm{F}, \mathbb{P}) \) be a discrete probability space let \( X: \Omega \to S_x \) and \( Y : \Omega \to S_y \), be two random variables, where \( S_x\) and \( S_y \) are finite subsets of \( \mathbb{R} \). Then the covariance of \( X \) and \( Y \) is:

[\[ \mathrm{Cov}[X, Y] = \sum_{?} ? (? - \mathrm{E}[X])(? - \mathrm{E}[Y])) \]]