\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
header
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \)
Math and science::INF ML AI

Shannon information content

For an ensemble, \( X = (x, A_x, P_x) \), the Shannon information content of an event, \( x \) is defined to be:

\[ h(x) = [...]  \\ \text{Where 'x' may be an outcome: a subset of } A_x \]

It is measured in bits.