\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \)
Math and science::Topology

Metric space

Metric

A metric \( d \) on a set \( X \) is a function [ \( d : \text{what} \to \text{ to what?} \)] with the following three properties:

What is this called?
\( d(x, y) = 0 \iff x = y, \text{ for all } x, y \in X \)
Triangle inequality
[...]
Symmetry
\( d(x, y) = d(y, x), \text{ for all } x, y \in X \)

A metric space is a set together with a metric on it, or more formally, a pair \( (X, d) \) where \( X \) is a set and \( d \) is a metric on \( X \).