\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \)
Math and science::Topology

Finer and coarser topologies

We say that one topology \( \mathcal{T} \) on \( X \) is finer than another topology \( \mathcal{T}' \) on \( X \) iff [in words...]. \( \mathcal{T}' \) is said to be coarser than \( \mathcal{T} \).

Stronger and weaker are alternative terminology for finer and coarser.

\( \mathcal{T} \) is strictly finer iff [...]

Symbolically,

  • \( \mathcal{T} \) is finer than \( \mathcal{T}' \) ⟺ [...].
  • \( \mathcal{T} \) is strictly finer than \( \mathcal{T}' \) ⟺ [...].