\( \newcommand{\matr}[1] {\mathbf{#1}} \newcommand{\vertbar} {\rule[-1ex]{0.5pt}{2.5ex}} \newcommand{\horzbar} {\rule[.5ex]{2.5ex}{0.5pt}} \)
deepdream of
          a sidewalk
Show Answer
\( \newcommand{\cat}[1] {\mathrm{#1}} \newcommand{\catobj}[1] {\operatorname{Obj}(\mathrm{#1})} \newcommand{\cathom}[1] {\operatorname{Hom}_{\cat{#1}}} \newcommand{\multiBetaReduction}[0] {\twoheadrightarrow_{\beta}} \newcommand{\betaReduction}[0] {\rightarrow_{\beta}} \newcommand{\betaEq}[0] {=_{\beta}} \newcommand{\string}[1] {\texttt{"}\mathtt{#1}\texttt{"}} \newcommand{\symbolq}[1] {\texttt{`}\mathtt{#1}\texttt{'}} \)
Math and science::Topology

Compactness. Subspaces

How do compactness and subspaces interact?

  1. A subspace of a compact space [is compact/is not necessarily compact?].
  2. Every closed subspace of a compact space [is compact/is not necessarily compact?].
  3. Every compact subspace of a compact space [is closed/is not necessarily closed?].
  4. Every compact subspace of a Hausdorff space [is closed/is not necessarily closed?].
  5. A subspace of a compact Hausdorff space is [ something iff something].